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ABSTRACT

Jurassic-1 is a pair of auto-regressive language models recently released by AI21 Labs, consisting
of J1-Jumbo, a 178B-parameter model, and J1-Large, a 7B-parameter model. We describe their
architecture and training, and evaluate their performance relative to GPT-3. The evaluation is in
terms of perplexity, as well as zero-shot and few-shot learning. To that end, we developed a zero-
shot and few-shot test suite, which we made publicly available (https://github.com/ai21labs/
lm-evaluation) as a shared resource for the evaluation of mega language models.

1 Introduction

AI21 Labs has recently released Jurassic-1, the first in a sequence of language models (LMs) that will be made available
to the research and development community. To help developers assess the suitability of Jurassic-1 for their needs, this
white paper provides technical details regarding its architecture and training, as well as an evaluation of its performance.

We believe that radical advances in NLP call for innovations beyond increasing the network size, training data, and
training time. But size does matter. Jurassic-1 is a set of baseline models, inspired by OpenAI’s pioneering work on
GPT-3 (Brown et al., 2020). Similar to GPT-3, Jurassic-1 consists of auto-regressive models trained on a mix of English
corpora that scales up to 178B parameters. It diverges, however, from GPT-3 in several important respects, such as the
size of vocabulary and the depth/width ratio of the neural net. We cover these architectural decisions in the next section.
In that section we also briefly discuss the training process, covering basic topics such as training corpus and length of
training.1

Finally, we present our evaluation of the model, including a comparison with GPT-3. Evaluation of perplexity
is straightforward. Evaluation of zero-shot learning requires specification, and evaluation of few-shot learning is
notoriously tricky, being subject to the vagaries of prompt choice. We developed a zero-shot and few-shot evaluation suite
which we found useful, and have posted the suite to GitHub (https://github.com/ai21labs/lm-evaluation) as
a shared resource for the community for the evaluation of mega LMs.

2 Model and Training Details

In this section we describe the design choices behind our Jurassic-1 models. In sub-section 2.1 we describe the
architecture that Jurassic-1 is based upon, how it differs from prior approaches, and how that translates into faster
inference. In sub-section 2.2 we describe the vocabulary we developed for increasing the tokenization efficiency,
thereby reducing the compute needed to process a given string of text, as well as providing a certain amount of semantic
inductive bias. Last, in sub-section 2.3 we briefly describe how the model was trained.

1Training such a large model, on over 800 GPUs over many months, is a non-trivial engineering feat, and raises many issues not
present in smaller models: Overflows, null attention heads, model and data parallelism that require solutions on top of packages such
as DeepSpeed (Rasley et al., 2020), hardware failures, rigorous checkpointing, and more. These additional details are beyond the
scope of this paper.
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Model nparams nlayers dmodel nheads dhead nvocab

GPT-3 6.7B 6.7B 32 4096 32 128 50K
J1-Large 7.5B 32 4096 32 128 256K

GPT-3 175B 175B 96 12288 96 128 50K
J1-Jumbo 178B 76 13824 96 144 256K

Table 1: Comparing the architecture of our Jurassic-1 models to their GPT-3 counterparts.

Tokenizer nvocab Wikipedia OWT Books C4 PileCC Avg. arXiv GitHub Avg.

T5’s SP 32K 0.255 0.253 0.291 0.245 0.234 0.256 0.375 0.370 0.372
GPT2/3’s BPE 50K 0.223 0.217 0.253 0.216 0.225 0.227 0.333 0.405 0.369

Jurassic-1’s SP 256K 0.171 0.158 0.172 0.154 0.159 0.163 0.257 0.322 0.290

Table 2: Comparing the efficiency of different tokenizers on various corpora, as measured by the average tokens-per-
bytes (TPB) ratio, i.e., number of tokens divided by number of bytes in a sample from the corpus.

2.1 Architecture

We based our models on the decoder module of the Transformer architecture (Vaswani et al., 2017) with the modifications
proposed by Radford et al. (2019). Input tokens are first converted to vector representation with an nvocab-by-dmodel

embedding matrix (see following section for a further discussion), and then fed into the Transformer network. The
architecture is composed of nlayers Transformer layers using a hidden dimension dmodel, each equipped with a self-
attention module with nheads attention heads of size dhead and a feed-forward module. See prior works for specific
details on inner-modules.

We targeted two model sizes that we call in short J1-Large (7.5B parameters) and J1-Jumbo (178B parameters), which
roughly correspond to GPT-3 6.7B and GPT-3 175B models (as specified in Brown et al. (2020)), respectively. See
Table 1 for exact specifications of both our Jurassic-1 models and their GPT-3 counterparts.

For J1-Jumbo, we diverged from the Transformer architecture used by GPT-3 175B. Instead, we designed our architecture
in light of a recently proposed theory (Levine et al., 2020) for the depth-to-width expressivity tradeoff found in self-
attention networks. According to said theory, to leverage the full extent of the power brought by depth, the width must
be chosen appropriately – put another way, for a given parameter budget there is an optimal depth. Specifically, for a
parameter budget of 175B (not including embedding matrix), the optimal depth should be around 80 layers, far from the
96 layers used by GPT-3 175B.

We put the theory to test and designed our J1-Jumbo with 76 layers. We used 76 rather than 80 layers because we
also have to account for various hardware considerations during both training and inference. For example, the hidden
dimension is constrained by the number of heads and their size, while dhead should be a multiple of 8 for optimal
matrix-multiplication operations on GPUs and nheads should be divisible by the model parallelization factor. Similarly,
the layers are divided into stages of equal compute needs for pipeline parallelization, introducing a constraint on nlayers

as well.

Beyond the potential advantages suggested by the theory, another byproduct of our refined architecture is a significant
gain in runtime performance. By shifting compute resources from depth to width, more operations can be performed
in parallel (width) rather than sequentially (depth). This is especially relevant to text generation where tokens are
processed one at a time, and so there is less opportunity for parallelization, resulting in sub-optimal GPU utilization. In
our benchmarks, comparing our architecture against GPT-3 175B on the same hardware configuration, our architecture
has modest benefits in training time (1.5% speedup per iteration), but significant runtime gains in batch inference (7%)
and text generation (up to 23%).

2.2 Large Vocabulary for Tokenization Efficiency

The runtime for processing a raw string of text with a Transformer architecture is directly related to the number of
tokens, denoted by N , the string is encoded into, roughly O(N) dense linear operations per Transformer layer and
O(N2) for the self-attention operation. Given that, we investigate strategies to improve the tokens-per-word ratio,
thereby reducing the cost for processing the text.
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Word-Pieces Words Multi-Word Expressions

z _cat _ever_so_slightly
_pre _descriptive _Tony_Stark
ism _System.out.println _marketing_campaign
tion _Pokemon _Higgs_boson
-ness _e.g. _production_capacity

-in-law _stepping_down
-on-demand _https://github.com/ _bank_accounts

-of-the- _LGBT _National_Public_Radio

Table 3: Examples of items from J1’s vocabulary, including word-pieces, whole words, and multi-word expressions,
where we use the more loose sense of a word as a sequences not containing whitespace in the middle of it. Underscore
represent a literal space in the token.

Figure 1: An example showing how multi-word tokens and an overall larger vocabulary can better articulate the various
options the model considers at a given point in the text.

Two of the most common tokenizers used for LMs are GPT2/3’s Bytes-Pair-Encoding (BPE) tokenizer (Sennrich et al.,
2016; Radford et al., 2019; Brown et al., 2020) and T5’s SentencePiece (SP) tokenizer (Kudo and Richardson, 2018;
Raffel et al., 2020), each employing a token vocabulary of at most 50K tokens, where each token represents either a
word or a word piece. GPT’s BPE tokenizer is a bit more efficient than T5’s SP on English text, with an average of
0.227 tokens per byte (TPB) vs. 0.256 for T5 (lower is better). In other domains, e.g., source-code or articles in LaTeX,
both tokenizers are on par with 0.37 TPB. See Table 2 for per domain statistics.

To represent text more efficiently, we trained a SP tokenizer with a larger budget of 256K vocabulary items and without
restricting it to word boundaries. The resulting vocabulary contains a rich mixture of word pieces, whole words, and
multi-word expressions, with a fallback to unicode bytes for out-of-vocabulary instances. There have been several prior
works (Chen et al., 2016; Diao et al., 2020; Zhang et al., 2021) on utilizing larger vocabularies, or augmenting word
vocabularies with phrase vocabularies, but increasing the token efficiency was not the focus of these earlier works, and
this approach was never employed in models of Jurassic-1’s scale (to the best of our knowledge).

The result of our improved tokenizer is a vastly more efficient text representation with a 0.163 TPB on English text and
0.29 on non-English domains (see Table 2 for full details). In other words, we can represent the same text with 28%
fewer tokens than GPT-3, enabling us to process queries up to 1.4× faster when using the same architecture, and nearly
1.8× when accounting for the architectural speedups reported in the previous section. Alternatively, if we use the same
maximal sequence length of 2048 tokens, we can represent 39% more text, allowing our model to cover more content
during training and leverage longer prompts in few-shot settings. See section 3 for effect on few-shot performance.

Furthermore, by incorporating multi-word expressions into our vocabulary, it is more closely aligned with the semantic
units of the text, including both named entities and common phrases (see examples in Table 3). Tokenizing according to
the semantic units of the text has several advantages, such as more sample-efficient training (Levine et al., 2021), and
more interpretable decoding, as illustrated in Figure 1.

Increasing the vocabulary does have some very minor drawbacks. Namely, it requires more memory to store the
additional parameters of the vocabulary embedding layer, as well as more computing resources to calculate the token
probabilities across the larger vocabulary. Yet, for large-scale LMs, these additional costs are negligible in comparison
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Corpus Curie (≈GPT-3 6.7B) J1-Large Davinci (≈GPT-3 175B) J1-Jumbo

arXiv -0.639 -0.515 -0.581 -0.471
Books3 -0.611 -0.628 -0.556 -0.579
C4 -0.547 -0.499 -0.501 -0.455
DM Math -0.989 -0.734 -0.950 -0.719
Enron Emails -0.718 -0.530 -0.664 -0.431
Freelaw -0.470 -0.401 -0.424 -0.356
GitHub -0.496 -0.307 -0.447 -0.248
Gutenberg -0.873 -0.672 -0.806 -0.617
Hackernews -0.726 -0.644 -0.676 -0.602
NIH Exporter -0.462 -0.440 -0.424 -0.409
Open Subtitles -0.695 -0.667 -0.646 -0.609
Phil Papers -0.557 -0.571 -0.501 -0.514
PileCC -0.534 -0.512 -0.484 -0.464
Pubmed Abstracts -0.475 -0.441 -0.433 -0.407
Pubmed Central -0.523 -0.433 -0.478 -0.401
StackExchange -0.583 -0.494 -0.536 -0.454
Ubuntu IRC -0.716 -0.644 -0.656 -0.594
USPTO -0.426 -0.407 -0.392 -0.372
Youtube Subtitles -0.616 -0.620 -0.565 -0.572

Average -0.613 -0.535 -0.564 -0.488

Table 4: We report average log-probabilities per byte on variety of corpora (Raffel et al., 2020; Gao et al., 2020) to
illustrate the suitability of our models on various domains. On almost all corpora our Jurassic-1 models are well ahead
of their GPT-3’s counterparts.

with all the other layers. The vocabulary embedding for J1-Jumbo, for example, requires 3.6B parameters, which are
just 2% of all parameters.

2.3 Training Details

Training models of these scales poses many engineering challenges because of their immense size. Simply storing 178B
parameters requires more than 356GB of memory in half-precision, whereas even the largest GPUs available today have
a maximum memory of 80GB, and this is before taking into account the optimizer’s state or the intermediate calculations
used by backward simulations. Therefore, training must be distributed across tens or hundreds of nodes, each with
multiple GPUs, which presents its own set of challenges, e.g., loading and saving these huge checkpoints across many
nodes creates communication bottlenecks. To utilize the available nodes efficiently, we relied on a combination of
data, model, and pipeline parallelism strategies, as well as distributively sharding the optimizer’s state parameters as
proposed in Rajbhandari et al. (2020). We based our implementation on both DeepSpeed (Rasley et al., 2020) and
MegatronLM (Narayanan et al., 2021).

Our model was trained with the conventional self-supervised auto-regressive training objective on 300B tokens drawn
from publicly available resources, attempting, in part, to replicate the structure of the training data as reported in Brown
et al. (2020). As for the optimization procedure, here too we followed the hyper-parameters suggested in Brown et al.
(2020) for each corresponding model size. Namely, we used a base learning rate of 1.2× 10−4 and 0.6× 10−4, and
a batch size of 2M and 3.2M tokens, for J1-Large and J1-Jumbo, respectively. We also used a linear warm-up over
roughly the first 375 million tokens, and gradually increased the batch size from 32K tokens up to its target value for
the first few billion tokens.

3 Evaluation

Our Jurassic-1 models, as well as their GPT-3 counterparts, were extensively tested on a variety of tasks. As a first
step, we discuss the model’s ability to complete text across different domains. The ability to perform zero-shot learning
is our primary criteria for evaluating the model’s ability to solve a wide variety of tasks, since it is less vulnerable to
prompt choice than the few-shot setting, and thus more stable and consistent. Finally, we demonstrate the few-shot
capabilities of our model on select tasks. We find that in all cases our models perform either on par or better than their
GPT-3 counterparts.
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Question Format Answer Format Newlines ARC-Challenge ARC-Easy RACE-middle RACE-high

Question: Answer: 1 48.1% 67.1% 56.6% 46.5%
Question: Answer: 2 49.5% 67.0% 55.6% 45.5%
question: answer: 1 48.5% 67.2% 56.3% 46.5%
question: answer: 2 49.7% 68.0% 56.1% 46.4%

Q: A: 1 47.7% 66.1% 56.6% 45.9%
Q: A: 2 47.5% 66.9% 55.9% 45.7%

Standard Deviation 0.90% 0.59% 0.39% 0.43%

Table 5: Variations in accuracy of question-answering tasks (using J1-Jumbo) due to minor format differences in how
the question and answers are presented to the model, and the number of separating newlines. Results are based on our
J1-Jumbo model, but similar variations occur in J1-Large as well as in GPT-3 models.

Task Test Size Curie (≈GPT-3 6.7B) J1-Large Davinci (≈GPT-3 175B) J1-Jumbo

ARC-Challenge 1172 41.7% 41.7% 50.2% 48.1%
ARC-Easy 2376 60.3% 62.2% 69.2% 67.1%
BoolQ 3270 66.1% 65.0% 75.9% 73.5%
HellaSwag 10042 68.4% 71.9% 79.3% 79.3%
PIQA 1838 76.8% 78.8% 80.1% 81.4%
RACE-high 3498 42.5% 43.1% 46.2% 45.9%
RACE-middle 1436 53.2% 53.9% 56.0% 56.6%
RTE 277 55.2% 59.2% 57.4% 62.8%
StoryCloze 1871 77.6% 80.2% 83.1% 83.1%
Winogrande 1267 64.5% 64.4% 70.1% 68.9%

Average 60.6% 62.0% 66.7% 66.7%

Table 6: Zero-shot results on a select set of tasks from Brown et al. (2020), according to the formats included in their
paper.

For testing under these different settings, we developed our own evaluation suite, which we published at https:
//github.com/ai21labs/lm-evaluation. We utilized OpenAI’s commercial API, notably its Curie and Davinci
endpoints, to evaluate GPT-3 with our suite of tests. It is not specified in its documentation, but we estimated based on
our experiments and their correlation to the results reported in Brown et al. (2020) that Curie corresponds to GPT-3
6.7B and that Davinci corresponds to GPT-3 175B.

For the text completion evaluation, we measured the log-probability of a sample of documents of similar lengths from a
given corpus, normalized by the number of bytes in the document in order to be tokenization independent. We tested
on a variety of domains found in the Pile dataset (Gao et al., 2020), including web (Pile’s Common Crawl corpus),
academic text formatted in LaTeX (arXiv), fiction books (Books3, Gutenberg), computer programs (GitHub), and more.
In all but three corpora, our Jurassic-1 models outperform their GPT-3 counterparts. See complete results in Table. 4.

Our main evaluation is centered on zero-shot learning capabilities. Our decision to use zero-shot learning was driven by
its simplicity and deterministic behavior, which does not depend on the selection of examples shown during few-shot
learning. Nevertheless, the formatting of a task can have an impact on how well a model performs, as demonstrated in
Table 5, where various forms of formatting question-answering tasks had a significant effect on the accuracy of the
correct answer. As there is no standard benchmark for zero-shot performance, we tried to replicate the formats used by
Brown et al. (2020) from the few examples in their figures. See the repository for our evaluation suite for the format
specification we used. Our results on Curie and Davinci deviate slightly from those presented in Brown et al. (2020),
perhaps due to the slight differences between formats used in presenting the task, and the possibilities that OpenAI’s
API is based on a slightly different set of models than those presented in Brown et al. (2020). Nevertheless, for the most
part there is a strong correlation with the results reported in their paper, as mentioned above. When compared to our
models, we see varied results, where on some tasks the Jurassic-1 models come ahead and in some GPT-3. On average,
we see that both models attain the same performance. See complete results in Table. 6.

While on zero-shot both GPT-3 and J1 attain on par results, the main advantage of J1 is that it reads text more efficiently.
One of its benefits is that in few-shot learning settings more training examples can fit in the prompt. Not every
task requires many examples, and in some tasks adding too many could even hurt performance. In our experience,
question-answering tasks usually need only a few examples. However, in many real-world scenarios, having more
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Figure 2: Results for few-shot learning on the DBPedia-14 and TREC-6 text-classification tasks. The vertical line
signify the maximal number of examples that would fit in the prompt for a GPT-3 model. As shown, J1-Large is able to
attain better results by allowing for more training examples to fit in the prompt for the same number of tokens.

examples could have a significant impact on performance. This is especially true in cases where the task has many
edge cases or is more fuzzily defined, and so many examples are needed to convey to the language model the expected
result, e.g., paraphrasing sentences or summarizing a document. Since it can be difficult to consistently measure these
kind of tasks without human evaluation, we instead turn to text-classification tasks over a large set of classes. When
many classes are involved, more examples are needed to properly specify each class. We evaluated J1 and GPT-3
on two text-classification datasets, namely, DBPedia-14 and TREC-6. In both cases we see that the accuracy can be
dramatically improved by adding more examples than can fit into GPT-3’s context length. See our results in Figure 2.

As a final remark, we wish to comment on the issue of bias and toxicity found in our model, as well as practically all
language models in use today. As was observed in countless other works (Sheng et al., 2019; Bordia and Bowman,
2019; de Vassimon Manela et al., 2021; Nadeem et al., 2021), language models absorb biases and toxicity expressed in
the texts they were trained on, and are prone to replicating them. Our model is no different, and indeed many language
biases can be observed when using it, e.g., a doctor is more likely to be associated with the pronoun "he", while a nurse
is more likely to be associated with the pronoun "she". See Table 7 for a thorough comparison of our models and their
GPT3 counterparts on the StereoSet (Nadeem et al., 2021) bias benchmark. While it appears the Jurassic-1 models are
marginally less biased than GPT3, this is merely one benchmark and we do not wish to overstate our claims.

When these issues are carelessly ignored, employing language models could lead to unintended and discriminative
consequences, and if deployed in widespread settings could cause actual harm to society. Many methods could be
used to mitigate these issues, e.g., by carefully engineering prompts, or filtering suspected results – which we strongly
recommend users of our models to adopt – but this is an active area of research (Sun et al., 2019; Bender et al., 2021) and
the problem at large is far from solved. We are fully-committed to engaging with the community, constantly monitoring
developments in this area, and incorporating such methods, as they become mature, into our models. We invite anyone
interested in conducting research on or otherwise promoting AI ethics and safety to contact us at safety@ai21.com and
explore opportunities for collaboration.

4 Summary

We released Jurassic-1, a pair of auto-regressive language models, including both the 178B-parameter J1-Jumbo, as
well as its smaller sibling, J1-Large, with 7B parameters. The models utilize a more efficient architecture and tokenizer,
which significantly speeds up inference. In addition, since our tokenizer can fit more text in the same context length,
more examples can be included in few-shot learning settings. We evaluated our Jurassic-1 models on data completion,
zero-shot learning and few-shot learning. Our zero-shot and few-shot evaluation code is made publicly available. We
find that our Jurassic-1 models can predict text from a broader set of domains (web, academic, legal, source code, and
more) than GPT-3, achieve comparable performance in zero-shot settings, and can be superior to GPT-3 in few-shot,
due to their ability to fit more examples into a prompt.
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Task Metric Curie (≈GPT-3 6.7B) J1-Large Davinci (≈GPT-3 175B) J1-Jumbo

Intra-Sentence

Gender
LM 92.7 92.6 93.9 92.9
SS 72.2 72.1 73.3 75.4
ICAT 51.6 51.6 50.1 45.7

Profession
LM 91.1 91.7 91.9 92.3
SS 65.3 64.2 66.6 67.0
ICAT 63.2 65.7 61.4 60.9

Race
LM 94.0 93.6 94.0 93.6
SS 64.6 62.8 68.6 65.6
ICAT 66.5 69.7 59.0 64.3

Religion
LM 92.0 92.1 92.8 91.4
SS 69.5 65.2 65.8 66.2
ICAT 56.2 64.0 63.4 61.8

Intra-Sentence
Overall

LM 92.7 92.7 93.1 92.9
SS 66.1 64.6 68.3 67.4
ICAT 62.9 65.7 59.0 60.6

Inter-Sentence

Gender
LM 83.7 83.2 82.6 80.9
SS 59.5 58.9 63.2 59.5
ICAT 67.9 68.4 60.7 65.4

Profession
LM 81.7 80.8 78.3 78.5
SS 56.9 53.1 58.1 56.5
ICAT 70.4 75.7 65.7 68.3

Race
LM 84.7 82.8 83.1 82.5
SS 51.6 47.6 52.2 50.6
ICAT 82.0 78.8 79.4 81.5

Religion
LM 87.1 84.9 89.0 85.2
SS 54.2 53.2 52.9 54.5
ICAT 79.8 79.4 83.9 77.5

Inter-Sentence
Overall

LM 83.5 82.2 81.5 80.8
SS 54.7 51.3 55.9 54.1
ICAT 75.7 80.0 71.9 74.2

Overall Score
LM 88.1 87.4 87.3 86.9
SS 60.4 58.0 62.0 60.7
ICAT 69.8 73.5 66.3 68.3

Table 7: A bias evaluation according to the StereoSet (Nadeem et al., 2021) benchmark, comparing the tendency of
the model to prefer stereotypes to anti-stereotypes on various aspects (gender, profession, race, and religion). The
evaluation is divided to inter-sentence and intra-sentence text-completion tasks. The LM Score measures the accuracy
of an LM to prefer a relevant completion to a sentence over an unrelated completion. The SS Score measures the
probability of an LM to prefer a stereotype completion to an anti-stereotype – an ideal score would be 50, signifying no
bias either way. The ICAT Score is an aggregated score that is equal to ICAT = LMS × min(SS,100−SS)

50 , where 100
represents the ideal model. To accommodate for our multi-word tokenizer, we normalize log-probs of completions by
number of characters rather than number of tokens, which we found to help GPT-3 models as well.
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